1	"Assessment and Management of	f Proteinuria in Dogs	and Cats"
2	2004 ACVIM Forum Consensu	18 Statement (Small Ani	mal)
3	DRAFT - Jul	ly 28, 2004	
4 5	Consensus Panel Members		
6	Consensus i dici memoris.		
7	George E. Lees, Cha	air	
8	Texas A&M Uni	versity, USA	
9	glees@cvm.tam	u.edu	
10	Soott A Drown	Cragory E. Crayor	
11	Scou A. Brown University of Georgia USA	Kansas State University	USA
12	sbrown@vet uga edu	ggrauer@vet ksu edu	, USA
14	bere in the form Barrow and	88	
15	Jonathan Elliott	Shelly L. Vaden	
16	Royal Veterinary College, UK	North Carolina State Un	iversity, USA
[7 10	amc@jelliott60.freeserve.co.uk	shelly_vaden@ncsu.edu	
10			
20	Table of Contents		Page(s)
21			1 0.80(0)
22	Introduction		2
23			2.4
24	Defining and Classifying Proteinuria		3-4
25 26	Detection and Assessment of Persistent Re	enal Proteinuria	4-5
27			10
28	Implications of Persistent Renal Proteinuri	a	5-8
29			0.10
30 21	When and How to Test for Proteinuria		8-10
32	Response to Persistent Renal Proteinuria		10-12
33			10 12
34	References		13-14
35	T 11		1.5
56 87	l able		15
38	Figures		16-17
39			
10	Appendix		18
41 12			
12 13 14 15 16	© ACVIM 2004, all rights reserved. Draft Consen otherwise reproduced with express permission of t	sus Statements may only be d he ACVIM	istributed or

47 Introduction

48 Results of recent studies suggest that in dogs and cats, as in human beings, persistent 49 proteinuria is associated with greater frequency of renal morbidity, renal mortality, and all cause 50 mortality [1-3]. Moreover, risk of developing these adverse outcomes increases as the magnitude 51 of proteinuria increases [2]. Existing data supporting these statements are derived mainly from 52 studies of dogs and cats with chronic renal failure; that is, animals with chronic kidney disease 53 (CKD) that is already causing azotemia [1,2]. However, some recent data also indicate that 54 proteinuria is associated with an increased risk of all cause mortality even in cats with renal 55 function that is otherwise good (ie, exhibiting adequate urine concentrating ability and not 56 azotemic) when their proteinuria is first discovered [3]. 57

Although data from studies of dogs and cats are sparse, results of recent studies also suggest that when markedly proteinuric dogs and cats are treated with angiotensin convertingenzyme inhibitors having renoprotective effects (ie, that decrease or delay adverse outcomes), a reduction in the magnitude of proteinuria is also observed during treatment [4,5]. This same phenomenon is now well documented in human beings with many different types of renal disease [6-9].

64

65 Observation that greater proteinuria is associated with more rapid renal disease 66 progression and that interventions that reduce proteinuria also are renoprotective has fueled speculation and much investigation about the possible role of proteinuria as a direct cause of 67 68 further glomerular and/or tubulointerstitial injury in subjects with progressive nephropathies (reviewed in [10-12]). At the mechanistic level, the precise role of proteinuria in renal disease 69 70 progression currently is uncertain, especially in dogs and cats. Moreover, even if proteinuria is 71 harmful, such questions as how much proteinuria?, of what kind?, for how long?, to produce 72 what changes?, cannot be answered with the data that are presently available from studies of 73 dogs or cats. Nevertheless, regardless of proteinuria's role as a *mediator* of renal injury, 74 proteinuria is an important *marker* both for increased risk of adverse outcomes and for response 75 to renoprotective interventions. The value of proteinuria as a marker of clinically important 76 events in the kidney arises because it can occur and subsequently vary in magnitude because of 77 altered vascular permeability of glomerular capillary walls (ie, possibly marking the presence of 78 immune complexes, vascular inflammation, or intraglomerular hypertension, for example), or 79 impaired tubular handling of filtered proteins (ie, possibly marking the presence of 80 tubulointerstitial dysfunction, or example), or both. For these reasons, we have a strong 81 consensus that veterinarians should give more attention to the detection, evaluation, monitoring, 82 and treatment of dogs and cats with proteinuria.

83

84 Our goals herein are to: 1) describe a comprehensive cognitive framework with which to approach this task, and 2) provide veterinarians with specific recommendations for assessing and 85 managing dogs and cats with proteinuria based on data that are currently available. We recognize 86 87 that ongoing and future research will generate new information that may necessitate modification 88 of the specific recommendations; however, we believe that the cognitive framework will serve to 89 guide the development and implementation of future recommendations. Our sincere hope also is 90 that this consensus statement will invigorate the ongoing quest for greater understanding of the 91 clinical pathophysiology of proteinuria in dogs and cats; its causes, consequences, and diagnosis,

92 as well as of the effects of interventional therapies.

93	Defining and Classifying Proteinuria
94	
95	Definition of Proteinuria
96	Urine obtained from healthy dogs or cats with healthy kidneys typically contains a small
97	amount of protein, but as a diagnostic term, proteinuria generally is taken to mean detection of
98	an abnormal (ie, excessive) amount of protein in the urine. Several different methods to detect
99	proteinuria can be used to evaluate dogs and cats. These include semiquantitative tests performed
100	in a conventional urinalysis, determination of urine protein:creatinine ratio, and assay of urine
101	albumin concentration. Each of these methods has its place in veterinary practice; none of the
102	methods entirely replaces the others, and they can be used in a complementary fashion.
103	
104	Categories of Causes of Proteinuria
105	Proteinuria has numerous possible causes. The classification scheme for categories of
106	causes of proteinuria that we recommend for use in dogs and cats is slightly adapted from the
107	one published by DiBartola et al (Table 1) [13]. Moreover, we believe that it is important to
108	assiduously follow the definitions of the categories, as listed in the table.
109	
110	The most important reason why we prefer this classification scheme is that it provides a
111	specific correlate for each step in the diagnostic approach for localization of proteinuria that we
112	recommend. The rationale underlying the recommended diagnostic process for localization of
113	proteinuria in dogs and cats as outlined in Table 1 is explained as follows:
114	
115	when evidence of an excessive amount of protein is detected by urinalysis, localization
110	of the likely source of the proteinuria involves these sequential steps:
117	Step 1 to exclude "extra-urinary postrenal" – evaluate urine obtained by cystocentesis
110	Step 1. to exclude extra-urmary positional evaluate urme obtained by cystocontesis
120	Step 2 to exclude "prerenal" $-$ evaluate the plasma proteins (i.e. look for a dysproteinemia that
121	might explain the proteinuria).
122	
123	If it's not prerenal and it's not extra-urinary, then it is "urinary," and the next action is to
124	evaluate the urine sediment for evidence of inflammation or hemorrhage.
125	C
126	Step 3. to rule-in "urinary postrenal" – find evidence of inflammation or hemorrhage with or
127	without clinical signs of excretory pathway disease (eg, pollakiuria), but without apparent
128	clinical signs of nephritis.
129	
130	Step 4. to rule-in "pathological, interstitial renal" – find evidence of inflammation associated
131	with the clinical signs of an active nephritis (eg, tender kidneys, fever, renal failure).
132	
133	If the proteinuria is "urinary" and not associated with urine sediment evidence of inflammation
134	or hemorrhage the remaining possibilities are:
135	
136	1. "functional renal" – which is low-grade (ie, of low magnitude, mild, or "light") and
137	transient.
138	

139 140 141 142 143	2.	"pathological, tubular renal" – which also is low-grade, but typically is persistent. In some cases, such proteinuria is accompanied by normoglycemic glucosuria or abnormal electrolyte excretion that demonstrate the presence of multiple tubular reabsorptive abnormalities and help to identify the tubular origin of the proteinuria; however, tubular proteinuria often occurs in the absence of such findings.
144 145 146 147 148	3.	"pathological, glomerular renal" – which can be of any magnitude ranging from very low-grade (eg, microalbuminuria alone) to very substantial (ie, "heavy"), but also typically is persistent.
149 150		Consequently, the final steps in the localization process are:
150 151 152 153	Step 5 high to	. to rule-in "pathological, glomerular renal" if the magnitude of proteinuria is sufficiently support this conclusion; that is, UPC ≥ 2.0 in dogs and cats.
155 154 155	Step 6 evalua	. to rule-in "functional renal" if the proteinuria is mild and proves, with follow-up tion, to be transient.
156 157 158 159 160 161 162	Step 7 renal" types of that is experi- tubula	to rule-in "pathological, glomerular renal" (albeit low-grade) OR "pathological tubular if the proteinuria is mild but proves, with follow-up evaluation, to be persistent. These two of proteinuria cannot be reliably distinguished from one another by conventional testing currently available, unless or until the animals with "pathological, glomerular renal" ence an increase in the magnitude of proteinuria that is sufficient to rule-out "pathological renal" proteinuria (eg, UPC ≥ 2.0 , as in step # 5).
163 164 165 166 167 168 169 170 171 172	Defini of prot the mi step 7) protein focus of	tion of Persistent Renal Proteinuria The term, persistent renal proteinuria is subsequently used herein to refer to the types reinuria identified in steps 5 and 7 above. Additionally, persistent microalbuminuria is idest form (ie, lowest magnitude) of persistent renal proteinuria that can be detected (ie, in with the methods that are currently available. Persistent renal proteinuria is the type of nuria for which this panel has been asked to make recommendations and is the principal of the remainder of this consensus statement.
172 173 174	Detect	ion and Assessment of Persistent Renal Proteinuria
175 176 177	implic	Proteinuria not only must be detected, it must be assessed appropriately to determine its ations for the patient. Assessment of proteinuria involves investigation of 3 key elements:
178 179 180 181 182 183 184	•	<i>Localization</i> – the process of determining the likely site or mechanism that is causing the proteinuria. The information needed to make this assessment always includes the history, physical exam findings, the results of a complete urinalysis (ie, including a sediment examination) and sometimes a urine culture, as well as results of blood tests that are sufficient (in the context of the other known findings) to exclude dysproteinemia, which actually is an uncommon cause of proteinuria in dogs and cats.

185 • *Persistence* – determining whether or not proteinuria persists over time requires repeated 186 testing on \geq 3 occasions, \geq 2weeks apart. Moreover, comparison of serial values requires 187 appreciation of the range of day-to-day variation that may be observed in animals with 188 generally stable magnitudes of proteinuria. 189 190 • *Magnitude* – use of appropriate quantitative methods to obtain reliable indices of the magnitude of urine protein loss is crucial for clinical decision-making and for monitoring 191 192 trends, including response to treatment if therapy is indicated. Such methods include 193 UPC ratios to assess proteinuria and quantitative (ELISA) assays for albuminuria 194 expressed either as urine albumin/creatinine ratios or as concentrations (mg/dL) in urine 195 samples diluted in a standardized fashion (eg, to specific gravity, 1.010) to assess 196 microalbuminuria. 197 198 199 **Implications of Persistent Renal Proteinuria** 200 201 **General Implications** 202 Persistent renal proteinuria, as defined above, indicates the existence of chronic kidney 203 disease (CKD). However, the entire spectrum of CKD in dogs and cats that is identified in this 204 way has a wide range of possibilities in its clinical course. A substantial number of dogs and cats 205 experience morbidity or mortality attributable to CKD that progresses at a sufficiently rapid rate 206 to cause clinical illness during their lifetimes. Illness caused by such **progressive CKD** usually 207 is due to manifestations of renal failure but can be manifested as hypertension alone. In addition, 208 a larger, but not yet well defined, number of seemingly healthy dogs and cats have CKD that is 209 either non-progressive or so slowly progressive that it never generates recognizable morbidity or 210 mortality (ie, before death due to other causes). That is, some animals have **stable**, **subclinical** 211 **CKD** that generates no apparent adverse consequences for their health despite the fact that renal 212 lesions persist for the remainder of their lives. Another important, but also not yet well defined, 213 group of animals with CKD are those that have seemingly stable, subclinical CKD for extended 214 periods that can be quite long but are nonetheless subsequently followed by further renal disease 215 progression that may occur intermittently (ie, sporadically) or steadily once it becomes evident. 216 217 Based on the apparent clinical course of disease, animals with CKD identified by finding 218 persistent renal proteinuria can be categorized as follows: 219 1. those with apparently progressive CKD, defined by either: 220 a. finding that the condition has already reached an advanced stage, or 221 b. serial evaluations having demonstrated worsening trends. 222 2. those with **temporarily stable**, **subclinical CKD**, defined by: 223 a. extended periods (eg, ≥ 6 months) without apparent disease progression, followed by: 224 b. intermittently (ie, sporadically) or steadily worsening trends. 225 3. those with **indefinitely stable**, **subclinical CKD**, defined by: 226 a. extended periods (≥ 6 months) without apparent disease progression, followed by: 227 b. death or euthanasia for reasons unrelated to renal disease or failure. 228 229 When the progressive nature of an animal's CKD is not already self-evident, monitoring 230 the animal's renal disease status over time is crucial. Such monitoring is only able to distinguish

animals that *are progressing during the monitoring period* from those that are not progressing.

That is, in animals with currently stable, subclinical CKD, monitoring will not foretell the future. However, adequate monitoring of animals with stable, subclinical CKD should detect worsening

- trends in a timely manner if and when they occur, and thus should permit eventual differentiation
- of animals with temporarily versus indefinitely stable, subclinical CKD.
- 236

237 At least two possible scenarios for animals with temporarily stable, subclinical CKD can 238 be proposed. Such animals might actually be experiencing ongoing renal damage (ie, lesions are 239 progressing) that merely is hidden from detection during this period. This is a plausible scenario, 240 especially if ongoing damage is being contemporaneously offset by compensatory structural and 241 functional changes in the relatively undamaged portions of their kidneys. On the other hand, such 242 animals might actually have stable (ie, essentially unchanging) renal lesions for extended periods 243 that end because of reactivation of old or superimposition of new processes of renal injury. This 244 also is a plausible scenario, especially: (a) when the durations of periods of apparent stability are protracted. or (b) when the functional consequences of the renal lesions are especially mild (eg, 245 246 causing microalbuminuria alone or mild proteinuria in animals with adequate urine concentrating 247 ability and well-preserved excretory function). Regardless of such possibilities, there currently is 248 no way to reliably tell these two scenarios apart at any one moment in time, and treatment errors 249 (ie, either failing to give treatment that might be helpful, or giving treatment that is unnecessary 250 and could be harmful) will occur if therapeutic decisions are then formulated based on incorrect 251 assumptions about which scenario actually prevails. In this setting of uncertainty, monitoring is 252 the key to minimizing such errors. Detection of progressively worsening trends, such as a rising 253 magnitude of proteinuria, should prompt further action, but demonstration of stable or improving 254 indices of disease severity, including magnitude of proteinuria, is an indication for nothing more 255 than continued monitoring.

256

Persistent microalbuminuria is the mildest detectable form of abnormal renal handling of protein. Microalbuminuria usually is attributable to altered glomerular permselectivity; however, impaired tubular handling of the albumin that traverses the normal glomerular filtration barrier also can cause or contribute to microalbuminuria. Moreover, there currently is no practical way to reliably determine the portion of microalbuminuria, if any, that is due to tubular dysfunction rather than being of glomerular origin.

263

264 Because microalbuminuria is the mildest detectable form of abnormal renal handling of 265 protein, it is both the form of persistent renal proteinuria that is most likely to be manifested by animals that actually have indefinitely stable, subclinical CKD, as well as the form of persistent 266 267 renal proteinuria that is most likely to be first manifested by animals that actually have or will 268 eventually develop progressive CKD. Again, monitoring is the key to eventually differentiating 269 these two categories of animals with microalbuminuria from one another. Progressive increases 270 in magnitude of microalbuminuria are likely to be indicative of active, ongoing renal injury, and 271 should prompt further investigation.

272

In animals with CKD causing renal failure, magnitude of proteinuria may diminish as the nephropathy approaches its end-stage because there are fewer and fewer remaining nephrons for protein loss to occur through. Therefore, as renal failure progresses, reductions in the magnitude of proteinuria that may be observed do not necessarily mean that the renal disease has improved.

277	Indeed, if proteinuria really is a mediator renal injury, this lesser magnitude of proteinuria might
278	actually be as damaging (or more damaging) to the remaining nephrons as greater magnitudes of
279	proteinuria had been at earlier stages of the disease.
280	
281	In many dogs (and probably cats), renal lesions that cause persistent renal proteinuria are
282	incited by mechanisms that are initiated by disease processes located in other organ systems (ie.
283	by diseases that are not primary renal or even urinary disorders). Thus, the kidneys can serve as
283	"sentinels" to aid in the detection of such disorders. That is finding persistent renal proteinuria
285	can alert the animal's veterinarian and owner to the existence of a previously unsuspected threat
205	to the animal's health. Timely discovery of a treatable underlying infectious, inflammatory, or
280	noonlastic condition because of a clinical investigation that is prompted by detecting proviously
207	unsugnested paraistent renal proteinurie or microally minurie is an important potential hanafit of
200	unsuspected persistent renar proteinuna or inicroarbummuna is an important potential benefit or
289	screening apparently nearthy animals for proteinuria.
290	
291	In animals with serious, life-threatening illnesses (eg, in dogs and cats in intensive care
292	units), transient microalbuminuria or mild proteinuria may occur as an indication of endothelial
293	injury throughout the circulation, including in the kidneys [14]. That is, whenever there is a
294	disruption in endothelial architecture to the point that the vessels may leak, small amounts of
295	albumin may appear in the urine, albeit only transiently if the animal survives and recovers from
296	its illness.
297	
298	
299	Strength of Evidence Levels
300	For the purposes of this document, the strength of evidence that is available to support
301	specific statements regarding the implications of proteinuria in dogs or cats, as well as specific
302	recommendations for therapeutic interventions, has been categorized in 3 levels as described in
303	Appendix I. Evidence categorized as Level 1 is the strongest (ie, most convincing), and evidence
304	categorized as Level 3 is the weakest (ie, least convincing).
305	
306	
307	Specific Implications in Dogs
308	In dogs, persistent renal proteinuria with UPC values ≥ 2.0 usually is due to glomerular
309	renal disease (Level 3) [15].
310	
311	In dogs with renal failure, having a UPC value > 1.0 at initial evaluation is associated
312	with increased risk of uremic morbidity and mortality Additionally risk of adverse outcomes
313	increases as the magnitude of proteinuria increases (Level 1) [2]
314	indicases as the magnitude of proteinant mercases (Dever 1) [2].
315	In doors LIPC values > 0.5 are evidence of persistent renal proteinuria when they are
316	found repeatedly in ≥ 3 specimens obtained ≥ 2 weeks apart and cannot be attributed to a
317	$repeated by m \leq 5$ specimens obtained ≤ 2 weeks upart and cannot be attributed to a
318	protonul of positional eause.
310	In dags microalbuminuria is evidence of persistent renal proteinurie when it is found
370	repeatedly in ≥ 3 specimens obtained ≥ 2 weaks apart and connect to attributed to a postronal
320	repeatedly in ≤ 5 specificities obtained ≤ 2 weeks apart and cannot be attributed to a positellar cause
321 222	cause.
344	

- 323 Specific Implications in Cats
- 324

In cats, renal diseases that cause proteinuria with UPC values ≥ 1.0 occur uncommonly, and data sufficient for the formulation of general statements about the implications of proteinuria in such cats are not available. Nonetheless, UPC values ≥ 1.0 in cats should prompt a high index of suspicion for the presence of glomerular disease, but UPC values ≥ 1.0 (but usually still < 2.0) sometimes are observed in cats with progressive renal failure near end-stage.

330

In cats with renal failure, the risk of all cause mortality progressively increases as UPC at initial diagnosis increases across the full spectrum of possible UPC values, including UPC values within the normal reference range. That is, the lower the UPC value, the better the prognosis. In one study, having a UPC value ≥ 0.43 at initial evaluation was associated with an increased risk of all cause mortality (Level 2) [1].

336

In nonazotemic cats, the risk of all cause mortality also increases as UPC or albuminuria at initial evaluation increases, even within the conventional normal reference range. In one study, proteinuria was associated with reduced survival of nonazotemic cats. The median UPC for cats that died was 0.30, while the median UPC for cats that were censored (ie, were alive at the end of the study or were lost to follow up) was 0.16 (Level 2) [3].

In cats, studies comparing the implications of albuminuria (measured with a speciesspecific immunoassay) and proteinuria (measured by conventional UPC ratios) have thus far shown little difference between the two; however, the UPC cutoffs needed to differentiate cats with good outcomes from cats with adverse outcomes are much lower than the UPC cutoffs that currently are widely used in cats [1,3].

348

349 In cats as in dogs, the current conventional definition of persistent renal proteinuria is 350 either UPC > 0.5 or microalbuminuria found repeatedly in > 3 specimens obtained > 2 weeks 351 apart that cannot be attributed to a prerenal or postrenal cause. However, there are some data 352 suggesting that the upper limit of the normal reference range for UPC noncastrated male cats 353 should be as high as < 0.6. Nevertheless, the recent observations (as cited above) of reduced 354 survival in cats being associated with magnitudes of proteinuria that are within the currently 355 accepted normal reference range for healthy animals have generated new uncertainties about 356 cutoff values for proteinuria that should be used to define the health status of cats.

357 358

359 When and How to Test for Proteinuria 360

361 Urine testing that will detect proteinuria, if it is present, should be a component of the 362 clinical evaluations of dogs and cats with any serious illnesses that also prompt their attending 363 veterinarians to perform comprehensive hematological and serum biochemical evaluations (ie, 364 urinalyses should be done when CBCs and serum chemistry panels are performed to evaluate 365 dogs and cats with undiagnosed illnesses). In addition, animals with chronic illnesses that are 366 known to often become complicated by proteinuric renal disease should be tested for proteinuria 367 at \leq 6-month intervals while such disorders are being managed for extended periods. 368

369 Urine testing that will detect proteinuria, if it is present, should be a component of routine 370 clinical evaluations of apparently healthy dogs and cats in any circumstances that also prompt 371 their attending veterinarians to perform comprehensive hematological and serum biochemical 372 evaluations (ie, urinalyses should be done when CBCs and/or serum chemistry profiles are 373 performed as routine health evaluations of apparently healthy dogs and cats).

- 374 375 At a minimum, urine tests for proteinuria should consist of a complete urinalysis that 376 includes conventional semiquantitative evaluations of protein. Because false-positive dipstick 377 colorimetric test reactions commonly occur in well-concentrated or highly alkaline ($pH \ge 7.5$) 378 dog and cat urine specimens [16], satisfactory test methods are either a dipstick colorimetric test, 379 with positive reactions confirmed by a SSA turbidometric test [17], or a SSA turbidometric test 380 alone. Alternatively, an ERD test (E.R.D.-Screen[™] Urine Test, Heska, Ft. Collins, CO) or a 381 quantitative ELISA assay could be used to confirm the presence of albuminuria in the face of a 382 positive dipstick result (see microalbuminuria section below), All positive reactions, regardless 383 of the urine specific gravity, should prompt a follow-up evaluation of some kind. Reliance on 384 dipstick tests alone is not recommended due to the low specificity of positive reactions (ie, high 385 frequency of false-positive results).
- Strong positive reactions (≥ 1+; confirmed by SSA) are an indication to proceed with
 determination of UPC ratio either immediately or at least after repeated testing in 2-4
 weeks verifies persistence of the positive reactions.
- Weak positive reactions (trace; confirmed by SSA) are an indication at least for repeated testing in 2-4 weeks to check for persistence of the proteinuria, with determination of UPC ratio if the positive reactions do persist.
- Negative reactions (by dipstick alone, by SSA alone, or by SSA performed in an attempt to verify a positive dipstick reaction) are sufficient to exclude the existence of all forms of proteinuria except microalbuminuria (see below).
- 395

396 For animals in which proteinuria is documented or suspected, determinations of UPC 397 ratios should be performed to guide clinical decision-making and to monitor trends, including 398 response to treatment when therapeutic interventions are indicated. However, the variation in 399 UPC values observed in dogs with stable proteinuria suggests that serial UPC ratios probably 400 need to differ by as much as 40%, especially in the lower ranges of abnormality, to conclude 401 with a high level of confidence that the prevailing magnitude of proteinuria has actually changed 402 (increased or decreased). The variation of UPC ratios observed in cats with values within the 403 normal reference range suggests that serial UPC ratios need to differ by as much as 90% (ie, 404 nearly double) to conclude with a high level of confidence that a cat's magnitude of proteinuria 405 has increased.

- 406
- 407 Urine testing that will detect microalbuminuria, if it is present, is recommended under the408 following circumstances:
- When conventional evaluations for proteinuria are negative in dogs and cats with serious illnesses, and especially in those with chronic illnesses that are known to often become complicated by proteinuric nephropathies.
- When conventional evaluations for proteinuria are negative in apparently healthy dogs that are ≥ 6 years old and cats that are ≥ 8 years old, and use of the most sensitive test that might detect an abnormality is desired by the veterinarian or animal owner.

415 416 417 418 410	 When conventional evaluations for proteinuria produce equivocal or conflicting results. When dogs or cats that are known to be at risk for developing a glomerular renal disease (eg, individuals in breeds or families that are genetically predisposed to such disorders) are being prospectively monitored to detect onset of the disease as early as possible.
419 420 421 422 423	Dogs that have a "high positive" reaction for urine albumin using the semiquantitative test method that is commercially available frequently also have a UPC ≥ 0.5 , so finding such a "high positive" reaction is an indication to proceed with UPC determinations.
424 425 426	Response to Persistent Renal Proteinuria
420	General Principles
428 429 420	Appropriate responses to persistent renal proteinuria are the following series of escalating steps that depend on the magnitude of proteinuria and patient status (Figure 1).
430 431 432 433 434 435	• Monitor (lowest level) - which refers to repeating one or more tests that have been done previously in order to detect changes with passing time. The main purpose of monitoring is to detect worrisome trends (ie, changes that should prompt further action) in a timely manner.
436 437 438 439	• Investigate (higher level) - which refers to performing new or additional tests (ie, that would not otherwise be done) in order to discover an underlying systemic disease or to define the animal's renal disease more exactly.
440 441 442 442	• Intervene (highest level) - which refers to prescribing dietary changes and/or use of pharmacologic agents in order to at least attempt to beneficially modify the course of disease and/or improve the animal's health.
44 <i>5</i> 444	Implementation of this escalating responses approach should be sequential and inclusive
445	That is, one should only monitor (ie, not investigate or intervene) in circumstances that are the
446	least compelling. However, in other more compelling circumstances, one should investigate as
447	well as monitor (ie, but not intervene). Such a step-addition might be immediate or sequential,
448	depending on the situation. Further, one should intervene as well as investigate and monitor in
449	the most compelling circumstances, and once again, this step-addition might be immediate or
450	sequential, depending on the situation. Importantly, correct implementation of this escalating
451	approach precludes intervention without appropriate investigation and monitoring, as well as
452	investigation (especially invasive tests) without sufficient evidence, which might arise from
453	monitoring, to justify the risk to the animal and/or the cost to the owner.
454	
455	Specific Recommendations (Figure 2)
456	Persistent renal proteinuria should always prompt action, but appropriate actions depend on the prevailing magnitude of proteinurie and the aligned status of the patient. The extension of
457	possible actions are:

459

460 461 462 463 464	• <i>Prospective monitoring</i> – that is meant to promptly detect worsening trends in animals that appear to have stable, subclinical CKD because they are nonetheless at risk to have (or to develop) progressive CKD that may then require therapeutic intervention (ie, that would not otherwise be indicated) or to evaluate response to therapy.
465 466 467 468	• <i>Diagnostic investigation</i> – that is meant to detect any diagnosable, treatable infectious, inflammatory or neoplastic disease that might be the underlying cause of the animal's renal disease.
469 470 471 472 473 474	• <i>Therapeutic intervention</i> – that is meant to be renoprotective (ie, to slow the rate of renal disease progression) and using reduction of the magnitude of proteinuria as one index of therapeutic response. The treatment strategies to be considered are to feed an appropriate diet (one with reduced quantity/high quality protein with n-3 fatty acid supplementation) and/or to administer an ACEI drug.
475 476 477	Prospective monitoring sufficient to accomplish timely detection of any worsening trends is recommended for:
478 479	• Nonazotemic dogs and cats with persistent microalbuminuria.
480 481	• Nonazotemic dogs and cats with persistent renal proteinuria and UPC values ≥ 0.5 .
482 483 484 485 486	Note: When an underlying infectious, inflammatory or neoplastic condition is already apparent (ie, previously diagnosed and/or now clinically evident) in dogs or cats in this category, prospective monitoring should be combined with appropriate treatment for the underlying condition, when possible.
487 488 489	Diagnostic investigation that is focused on finding a potentially treatable underlying disease and adequate continued monitoring is recommended for:
490 491	Nonazotemic dogs and cats with rising magnitudes of persistent microalbuminuria
492 493	• Nonazotemic dogs and cats with persistent renal proteinuria and UPC values ≥ 1.0 .
494 495 496	After appropriate investigation and specific treatment of any underlying disease that is identified, therapeutic intervention accompanied by adequate monitoring is recommended for:
497 498	• Dogs with CKD causing azotemia and UPC values ≥ 0.5 .
499 500	• Cats with CKD causing azotemia and UPC values ≥ 0.4 .
501 502 503 504 505	• Nonazotemic dogs or cats with persistent renal proteinuria and UPC values ≥ 2.0.

	2004 AC VIIVI FOLUIII CONSCIISUS Statement (Sinan Annual)
506	Strength of Evidence Levels for Recommended Interventions
507 508 509 510	Recommendations for responding to proteinuria are provided herein despite the fact that few data with which to address these important clinical questions are available. Indeed, only one recommendation is even partially supported by results of a randomized, controlled clinical trial.
512	The recommendation to treat nonazotemic dogs with persistent renal proteinuria and LIPC
512	values ≥ 2.0 is based mainly on the results of a randomized, placebo-controlled trial of enalapril
514	therapy for dogs with glomerulonephritis reported by Grauer et al (Level 1) [4]. However, all
515	dogs entered into that trial had UPC values \geq 3.0, so the recommendation to initiate treatment if
516	UPC values are ≥ 2.0 is supported only by expert opinion (Level 3). Additionally, all the dogs in
517	that trial were fed a renal diet and given low-dose aspirin therapy. Therefore, whether or not the
518	benefits of enalapril therapy that were observed in that trial were in any way dependent on either
519	of these concomitant treatments is uncertain.
520	
521	The recommendation to treat azotemic dogs with persistent renal proteinuria and UPC
522	values ≥ 0.5 is based mainly on the results of experimental studies, albeit in the target species
523	(Level 2). In a study of dogs with the remnant kidney model of chronic renal failure (CRF) that
524	also had mild proteinuria, enalapril therapy reduced proteinuria and modulated progressive renal
525 526	supplementation with emage 2 polyupraturated fatty saids reduced proteinurie and slowed renal
520 527	disease progression, whereas supplementation with omega 6 polyunsaturated fatty acids
528	increased proteinuria and enhanced progression [19 20]
529	increased proteinaria and emaneed progression [19,20].
530	All other recommendations in this consensus statement are provided as expert opinion
531	(Level 3). Currently, there are no citable data available regarding a renoprotective reduction of
532	proteinuria (ie, administration of a treatment that decreased proteinuria and improved outcome)
533	in cats. Similarly, no data are available regarding renoprotective reduction of microalbuminuria
534	in either dogs or cats.
535	
536	
537	<u>Final Caveats</u>
538	renal proteinurie, which is but one of many possible manifestations of CKD in dogs and gate that
539 540	are important to evaluate and treat appropriately. Although veteringrians caring for animals with
540	repaid disease may need to pay greater attention to proteinuria, they also should not lose sight of
542	the proven importance of attending to other problems that often arise in dogs and cats with renal
543	disease or renal failure. Providing details about the proper management of these other problems
544	is beyond the scope of this consensus statement; however, they are individually and collectively
545	no less important to address than is proteinuria. Indeed, depending on the specific circumstances
546	of individual cases, proteinuria might well be relatively unimportant compared with one or more
547	other problems. Although this is not intended to be an all-inclusive list, some of the other issues
548	that often deserve attention include feeding an appropriate diet, controlling hyperphosphatemia
549	and hypertension, as well as combating anemia, metabolic acidosis, and inadequate appetite.
550	

551	Refere	ences
552 553	[1]	Syme HM, Elliott J. Relation of survival time and urinary protein excretion in cats with
555 555	[2]	renal failure and/or hypertension (abst). J Vet Intern Med 2003, 17:403.
556 557 558 559	[2]	proteinuria with morbidity and mortality in dogs with spontaneous chronic renal failure (abst). J Vet Intern Med 2004; 18:417.
560 561 562	[3]	Walker D, Syme HM, Markwell P, Elliott J. Predictors of survival in healthy, non- azotaemic cats (abst). J Vet Intern Med 2004; 18:417.
563 564 565	[4]	Grauer GF, Greco DS, Getzy DM, Cowgill LD, Vaden SL, Chew DJ et al. Effects of enalapril versus placebo as a treatment for canine idiopathic glomerulonephritis. J Vet Intern Med 2000; 14(5):526-533.
566 567 568	[5]	Grodecki KM, Gains MJ, Baumal R, Osmond DH, Cotter B, Valli VE et al. Treatment of X-linked hereditary nephritis in Samoyed dogs with angiotensin converting enzyme (ACE) inhibitor. J Comp Pathol 1997; 117(3):209-225.
569 570 571 572	[6]	Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 1996; 334(15):939-945.
573 574 575	[7]	Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non- nephrotic proteinuria. Lancet 1999; 354(9176):359-364.
576 577 578 579	[8]	Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 1997; 349(9069):1857-1863.
580 581 582	[9]	Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting- enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329(20):1456-1462.
583 584	[10]	Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med 1998; 339(20):1448-1456.
585 586	[11]	Keane WF. Proteinuria: its clinical importance and role in progressive renal disease. Am J Kidney Dis 2000; 35(4 Suppl 1):S97-105.
587 588	[12]	Zoja C, Benigni A, Remuzzi G. Cellular responses to protein overload: key event in renal disease progression. Curr Opin Nephrol Hypertens 2004; 13(1):31-37.

- - 1

- 589 [13] DiBartola SP, Chew DJ, Jacobs G. Quantitative urinalysis including 24-hour protein
 590 excretion in the dog. J Am Anim Hosp Assoc 1980; 16:537-546.
- [14] Turman CA, Vaden SL, Harris TL, Jensen WA. The prevalence of microalbuminuria in dogs and cats in an intensive care unit (abst). J Vet Intern Med 2004; 18:417-418.
- 593

600

- [15] Center SA, Wilkinson E, Smith CA, Erb H, Lewis RM. 24-Hour urine protein/creatinine
 ratio in dogs with protein-losing nephropathies. J Am Vet Med Assoc 1985; 187(8):820824.
- 597 [16] Grauer GF, Moore LE, Smith AR, Jensen WA. Comparison of conventional urine protein
 598 test strip method and a qualitative ELISA for the detection of canine and feline
 599 albuminuria (abst). J Vet Intern Med 2004; 18:418-419.
- [17] Moore FM, Brum SL, Brown L. Urine protein determination in dogs and cats:
 comparison of dipstick and sulfasalicylic acid procedures. Vet Clin Pathol 1991;
 20(4):95-97.
- [18] Brown SA, Finco DR, Brown CA, Crowell WA, Alva R, Ericsson GE et al. Evaluation of
 the effects of inhibition of angiotensin converting enzyme with enalapril in dogs with
 induced chronic renal insufficiency. Am J Vet Res 2003; 64(3):321-327.
- [19] Brown SA, Brown CA, Crowell WA, Barsanti JA, Allen T, Cowell C et al. Beneficial
 effects of chronic administration of dietary omega-3 polyunsaturated fatty acids in dogs
 with renal insufficiency. J Lab Clin Med 1998; 131(5):447-455.
- [20] Brown SA, Brown CA, Crowell WA, Barsanti JA, Kang CW, Allen T et al. Effects of
 dietary polyunsaturated fatty acid supplementation in early renal insufficiency in dogs. J
 Lab Clin Med 2000; 135(3):275-286.

613

614	Table 1 – Categories of Causes of Proteinuria Based on the Site and/or Mechanism of the
615	Underlying Abnormality
616	
617	Prerenal (Definition: due to abnormal plasma content of proteins that traverse glomerular
618	capillary walls having normal permselectivity properties).
619	Normal proteins that are not normally present free in the plasma; eg,
620	Myoglobin
621	Hemoglobin
622	Abnormal proteins; eg, immunoglobulin light chains (Bence-Jones proteins)
623	
624 625	Renal (Definition: due to abnormal renal handling of normal plasma proteins)
626	Functional (Definition: proteinuria that is due to altered renal physiology during or in
627	response to certain transient phenomena: eg. strenuous exercise, fever, etc.). The key
628	distinction here is that the proteinuria is not attributable to presence of renal lesions.
629	The hallmarks of this type of proteinuria are that it is mild and transient: that is, it
630	promptly resolves when the condition that is generating it resolves.
631	
632	Pathological (Definition: proteinuria that is attributable to structural or functional
633	<i>lesions within the kidneys</i> , regardless of their magnitude or duration).
634	<u></u>
635	Glomerular (Definition: due to lesions altering the permselectivity properties of
636	the glomerular capillary wall).
637	
638	Tubular (Definition: due to lesions that impair the tubular recovery of plasma
639	proteins that ordinarily traverse glomerular capillary walls having normal
640	<i>permselectivity properties</i>). These plasma proteins traffic into the urine from
641	glomerular capillaries. They consist mainly of low molecular weight proteins,
642	but may also include small amounts of moderate molecular weight proteins
643	(eg, albumin).
644	
645	Interstitial [Definition: due to inflammatory lesions or disease processes (ie, acute
646	interstitial nephritis) causing exudation of proteins into the urinary space.
647	These proteins traffic into the urine from peritubular capillaries.
648	
649	Postrenal (Definition: due to entry of protein into the urine after it enters the renal pelvis).
650	
651	Urinary [Definition: due to entry of proteins derived from hemorrhagic and/or exudative
652	processes affecting the walls of the urine excretory pathway; renal pelvis, ureter,
653	urinary bladder, and urethra (including into the urethra from the prostate gland in
654	males)].
655	
656	Extra-urinary (Definintion: due to entry of proteins derived from secretions or from
657	hemorrhagic and/or exudative processes affecting the genital tract and/or external
658	genitalia during voiding or in the process of collecting urine for analysis).
659	

664
665 Figure 1 – Schematic representation of the recommended paradigm for responding to proteinuria
666 with a series of escalating, inclusive step-wise responses.

673 674

677 678

- 679 Figure 2 Recommended cutoffs for the magnitude of proteinuria that should prompt specific
- 680 escalating responses to proteinuria depending on patient status; (A) in nonazotemic dogs and
- 681 cats, (B) in azotemic dogs, and (C) in azotemic cats. MA, microalbuminuria; UPC, urine protein-

682 to-creatinine ratio.

683 684 685	Appendix I – Strength of Evidence Levels Used to Annotate Statements Regarding Specific Implications of Proteinuria and Specific Recommendations for Therapeutic Interventions.
686	Level 1 (best evidence)
687	Based on data obtained from:
688	- At least one properly randomized controlled clinical trial
689	The reast one property fundomized controlled entitled that
690	Level 2
691	Based on data obtained from
692	- At least one well-designed clinical trial without randomization
693	- Cohort or case-controlled analytic studies
694	- Studies using acceptable laboratory models or simulations in the target species.
695	preferably from more than one center
696	- Multiple time series
697	- Dramatic results in uncontrolled experiments
698	1
699	Level 3
700	Based on:
701	- Opinions of respected authorities on the basis of clinical experience
702	- Descriptive studies
703	- Studies in other species
704	- Pathophysiological justification
705	- Reports of expert committees
706	
707	Initially adapted from: McGowan J, Chesney PJ, Crossley KB, LaForce FM. Guidelines for the
708	use of systemic glucocorticosteroids in the management of selected infections. Working Group
709	on Steroid Use, Antimicrobial Agents Committee, Infectious Diseases Society of America. J
710	Infect Dis 1992;165:1-13, by Dr. David J. Polzin, as in Polzin DJ. Treating feline renal failure:
711	an evidence-based approach. Proceedings of the 20 th ACVIM Forum, Dallas, Texas, May 29 –

712 713

714

June 1, 2002, pp 588-590.